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Abstract

An inverse non-Fourier fin problem is examined in the present study by an iterative regularization method, i.e., conjugate gradient
method (CGM), in estimating the unknown base temperature of non-Fourier fin based on the boundary temperature measurements.
Results obtained in this inverse problem will be justified based on the numerical experiments where three different temperature distribu-
tions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the base
temperature. Moreover, the drawbacks of previous study for this identical inverse problem, such as (1) the inverse solutions become poor
when the frequency of base temperature is increased, (2) the estimations depend strongly on the size of grids, (3) the estimations are sen-
sitive to the measurement errors and (4) the uncertainty of using the concept of future time step, can all be avoided by applying this
algorithm. Finally, it is concluded that accurate base temperatures can be estimated in the present study.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Finned surfaces have been in use over a long period of
time for dissipation of heat by convection or by radiation.
Applications for finned surfaces are widely seen in air-
conditioning, refrigeration, cryogenics and many cooling
systems in industry. Therefore it is quite nature that many
works have been done in order to study the thermal behav-
iors for these fins.

Numerous studies have been conducted to determine the
thermal behaviors of the fins and to optimize the dimen-
sions of the spine and longitudinal fins. A review on
extended surfaces over six decades is available in the work
by Kraus [1]. Yang [2] obtained the exact solution for con-
vective fins under a periodic heat transfer. Eslinger and
Chung [3] used a finite element method to solve a radiative
and convective fin. Chung and Iyer [4] used an integral
approach to determine the optimum dimensions for rectan-
gular longitudinal fins and cylindrical pin fins. Yeh [5] used
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the Lagrange’s multiplier method to find the optimum
dimensions of longitudinal rectangular and cylindrical pin
fins. In all the above fin problems only the Fourier effect
are considered.

With advances in micro-fabrication technology, the
micro-heat exchangers are of interest in many engineering
applications, such as cooling of electronic chips and cryo-
coolers using helium II. For such a situation, phenomena
with the finite thermal propagation speed might be impor-
tant for the thermal analysis of the extended surface in the
micro-heat exchangers.

For this reason, Lin [6] used a hybrid application of the
Laplace transform and control volume methods in deter-
mining the non-Fourier fins performance under periodic
thermal conditions. It can be seen that the discussions for
thermal behaviors for the non-Fourier fins are still limited
in the open literature and it is called the direct non-Fourier
fin problems.

The direct non-Fourier fin problems are concerned with
the determination of temperature at interior points of a fin
when the fin shape, initial and boundary conditions and
thermophysical properties are specified. In contrast, the
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Nomenclature

A amplitude of the input temperature
b thickness of the fin
C specific heat capacity
f unknown base temperature
J functional defined by Eq. (4)
J0 gradient of functional defined by Eq. (13)
h0 heat transfer coefficient
h(x) spatial-dependent heat transfer coefficient
H dimensionless heat transfer coefficient
k thermal conductivity
L length of the fin
M number of the temporal measurements
P direction of descent
t temporal coordinate
T temperature
Tb periodic boundary condition
Tin initial temperature of the fin
T b mean temperature of the periodic boundary

condition
Te environment temperature
x spatial coordinate
Y measured temperature

Greek symbols

b dimensionless relaxation time
Dh sensitivity function defined by Eq. (6)
e convergence criteria
c conjugate coefficient
g dimensionless spatial coordinate
k adjoint function defined by Eq. (11)
l search step size
h dimensionless temperature
he dimensionless environment temperature
u random variable
q density
r standard deviation of measurement error
s relaxation time
x dimensionless frequency of the temperature

oscillation
x̂ frequency of the temperature oscillation
n dimensionless temporal coordinate

Superscript

n iteration index
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inverse non-Fourier fin problems considered here involves
the determination of base temperature from the knowledge
of temperature measurements taken at the fin tip.

The discussions on inverse hyperbolic problems can be
found in the textbook by Isakov [7] and Romanov [8],
but on the inverse non-Fourier fin problems are limited
in the literature. Recently, Yang [9] published the first work
regarding the estimation of fin base temperature with mod-
ified Newton–Raphson and future time steps methods for
the non-Fourier fins. The immediately observed drawbacks
of the estimated inverse solutions are (1) the inverse solu-
tions become poor when the frequency of base temperature
is increased, (2) the estimations depend strongly on the size
of grids, (3) the estimations also depend strongly on the
number of future time steps, where the optimum number
for the future time steps is unknown in any real estima-
tions, and (4) the inverse solutions are very sensitive to
the measurement errors.

Inverse problems can be found in many engineering
applications [10–21]. The technique of iterative regulariza-
tion method [22] has been shown its potential for solving
many kinds of inverse problems and has been applied to
many different applications. For instance, Huang and
Wang [23] used CGM in estimating surface heat fluxes
for a three-dimensional inverse heat conduction problem.
Huang and Chen [24] used same technique in estimating
surface heat fluxes for a three-dimensional inverse heat
convection problem. Huang and Huang [25] used CGM
in an inverse biotechnology problem to estimate the optical
diffusion and absorption coefficients of tissue. Huang and
Lo [26] applied SDM in a three-dimensional inverse prob-
lem in predicting the heat fluxes distribution in the cutting
tools. Huang and Shih [27] utilized the CGM in a shape
identification problem to estimate simultaneously two
interfacial configurations in a multiple region domain.

For this reason the objective of the present inverse study
is to utilize the technique of the iterative regularization
method, such as CGM, in the identical problem as was
examined by Yang [9], and the goal is to avoid the draw-
backs and to improve the accuracy of the inverse solutions.

The CGM is also called an iterative regularization
method, which means the regularization procedure is per-
formed during the iterative processes and thus the determi-
nation of optimal regularization conditions is not needed.
The conjugate gradient method derives from the perturba-
tion principles and transforms the inverse problem to the
solution of three problems, namely, the direct, sensitivity
and the adjoint problem, which will be discussed in detail
in the following sections.

2. The direct problem

To illustrate the methodology for developing expres-
sions for use in estimating the base temperature for non-
Fourier fins based on the measured temperatures at the
boundary, we consider the following fin problem.

The mathematical formulation of this transient non-
Fourier fin problem in dimensional form is given by [6]:
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where k and qC are the thermal conductivity and heat
capacity per unit volume, respectively. s is the relaxation
time, Tin and Tb represent initial and base temperatures
for the fin, T b is the fin base mean temperature, A is the
amplitude of the input temperature and x̂ is the frequency
of the temperature oscillation.

The heat transfer coefficient h(x) is dependent on the
spatial coordinate and is defined as

hðxÞ ¼ h0H
x
L

� �
ð2Þ

Here, h0 is the referenced heat transfer coefficient and is
defined as h0 = bk/2L2. Fig. 1 illustrates the dimensional
geometry for the non-Fourier fin considered here. If the
following dimensionless quantities are defined

h ¼ T � T in

T b � T in

; he ¼
T e � T in

T b � T in

; g ¼ x
L

; n ¼ at

L2
;

b ¼ as

L2
; x ¼ x̂L

a

The dimensionless non-Fourier fin equation can be
expressed as

b
o2h

on2
þ ð1þ bHÞ oh
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¼ o2h

og2
� Hhþ Hhe;

0 < g < 1; n > 0 ð3aÞ
hðg; 0Þ ¼ 0; 0 < g < 1; n ¼ 0 ð3bÞ
ohðg; 0Þ

on
¼ 0; 0 < g < 1; n ¼ 0 ð3cÞ
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x
L
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Fig. 1. The fin configuration.
hð0; nÞ ¼ 1þAcosðxnÞ ¼ f ðnÞ ¼ unknown;

g ¼ 0; n > 0 ð3dÞ
ohð1; nÞ

og
¼ 0; g ¼ 1; n > 0 ð3eÞ

The direct problem considered here is concerned with
the determination of temperature distribution of fins when
the shape of fin, initial condition and the boundary condi-
tions at both boundaries are known. The solution for the
above non-Fourier fin problem is solved using Crank–
Nicolson type central difference [28].

3. The inverse design problem

For the inverse problem, time-dependent base tem-
perature, i.e., f(n), is regarded as being unknown, but
everything else in Eq. (3) is known. In addition, the temper-
atures measured at fin tip are assumed available.

Let the temperature reading taken by sensors at g = 1 be
denoted by Y(1, n), it is noted that the measured tempera-
ture Y(1, n) contain measurement errors. Then the inverse
problem can be stated as follows: by utilizing the above
mentioned measured temperature data Y(1, n), estimate
the unknown base temperature f(n).

The solution of the present inverse problem is to be
obtained in such a way that the following functional is
minimized:

J ½f ðnÞ� ¼
Z nf

n¼0

½hð1; nÞ � Y ð1; nÞ�2 dn ð4Þ

here, h(1, n) is the estimated or computed temperatures at
g = 1 and time n, nf is the final time. These quantities are
determined from the solution of the direct problem given
previously by using an estimated temperature for the exact
f(n).

The conjugate gradient method has the ability in opti-
mizing the above inverse problem and will be discussed
in detail in next section.

4. Conjugate gradient method (CGM) for minimization

The following iterative process based on the CGM [22]
is now used for the estimation of the unknown base tem-
perature f(n) by minimizing the functional J[f(n)].

f nþ1ðnÞ ¼ f nðnÞ � lnP nðnÞ ð5aÞ
Here, ln is the search step size in going from iteration n to
iteration n + 1 and Pn(n) is the direction of descent (i.e.,
search direction) given by

P nðnÞ ¼ J 0nðnÞ þ cnP n�1ðnÞ ð5bÞ
which is a conjugation of the gradient in the outward
normal direction J0n(n) at iteration n and the direction of
descent Pn�1(n) at iteration n � 1. The conjugate coefficient
is defined as [20]

cn ¼
R nf

n¼0
ðJ 0nÞ2 dnR nf

n¼0
ðJ 0n�1Þ2 dn

; with c0 ¼ 0 ð5cÞ
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We note that when cn = 0 for any n, in Eq. (5b), the direc-
tion of descent Pn(n) becomes the gradient direction, i.e.,
the steepest descent method (SDM) is obtained. The con-
vergence of the above iterative procedure in minimizing
the functional J is guaranteed in [29].

To perform the iterations according to Eq. (5a), we need
to compute a step size ln and the gradient of the functional
J0n(n). In order to develop expressions for the determina-
tion of these two quantities, a ‘‘sensitivity problem” and
an ‘‘adjoint problem” are constructed as described below.

5. Sensitivity problem and search step size

The sensitivity problem is obtained from the original
direct problem defined by Eq. (3) in the following manner:
It is assumed that when f(n) undergoes a variation Df(n),
h(g, n) is perturbed by Dh(g, n). Then replacing in the direct
problem f(n) by f(n) + Df(n) and h(g, n) by h(g, n) +
Dh(g, n), subtracting the resulting expressions from the
direct problem and neglecting the second-order terms, the
following sensitivity problem for the sensitivity function
Dh(g, n) are obtained.

b
o

2Dh

on2
þ ð1þ bHÞ oDh

on
¼ o

2Dh
og2
� HDh;

0 < g < 1; n > 0 ð6aÞ
Dhðg; 0Þ ¼ 0; 0 < g < 1; n ¼ 0 ð6bÞ
oDhðg; 0Þ

on
¼ 0; 0 < g < 1; n ¼ 0 ð6cÞ

Dhð0; nÞ ¼ Df ðnÞ; g ¼ 0; n > 0 ð6dÞ
oDhð1; nÞ

og
¼ 0; g ¼ 1; n > 0 ð6eÞ

The technique of Crank–Nicolson type central difference
discretization [28] is used to solve this sensitivity problem.

The functional J(f n+1) for iteration n + 1 is obtained by
rewriting Eq. (5a) as

Jðf nþ1Þ ¼
Z nf

n¼0

hð1; n; f n � lnP nÞ � Y ð1; nÞ½ �2 dn ð7aÞ

where we replaced f n+1 by the expression given by Eq. (5a).
If temperature h(1, n;f n � lnPn) is linearized by a Taylor
expansion, Eq. (7a) takes the form

Jðf nþ1Þ ¼
Z nf

n¼0

hð1; n; qnÞ � lnDhð1; n; P nÞ � Y ð1; nÞ½ �2 dn

ð7bÞ

where h(1,n;qn) is the solution of the direct problem by
using estimate base temperature for exact f(0, n) at g = 0
and time n. The sensitivity functions Dh(1, n;Pn) are taken
as the solutions of problem (6) at the measured position
g = 1 and time n by letting Df = Pn. The search step size
ln is determined by minimizing the functional given by
Eq. (7b) with respect to ln. The following expression
results:
ln ¼
R nf

n¼0
½hð1; nÞ � Y ð1; nÞ�Dhð1; nÞdnR nf

n¼0½Dhð1; nÞ2�dn
ð8Þ
6. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (3a) is multiplied by
the Lagrange multiplier (or adjoint function) k(g, n) and
the resulting expression is integrated over the correspon-
dent space and time domains. Then the result is added to
the right hand side of Eq. (4) to yield the following expres-
sion for the functional J[f(n)]:

J ½f ðnÞ� ¼
Z nf

n¼0

½hð1; nÞ � Y ð1; nÞ�2 dn

þ
Z nf

n¼0

Z 1

g¼0

kðg; nÞ b
o2h

on2
þ ð1þ bHÞ oh

on

�

� o
2h

og2
þ Hh� Hhe

�
dgdn ð9Þ

The variation DJ is obtained by perturbing f by f + Df

and h by h + Dh in Eq. (9), subtracting the resulting expres-
sion from the original Eq. (9) and neglecting the second-
order terms. We thus find

DJ ½f ðnÞ� ¼
Z nf

n¼0

2½hð1; nÞ � Y ð1; nÞ�Dhdn

þ
Z nf

n¼0

Z 1

g¼0

kðg; nÞ b
o

2Dh

on2
þ ð1þ bHÞ oDh

on

�

� o
2Dh
og2
þ HDh

�
dgdn ð10Þ

In Eq. (10), the double integral terms are integrated by
parts; the boundary conditions of the sensitivity problem
are utilized. The vanishing of the integrands leads to the
following adjoint problem for the determination of k(g, n):

b
o2k

on2
� ð1þ bHÞ ok

on
� o2k

og2
þ Hk ¼ 0;

0 < g < 1; n > 0 ð11aÞ
kðg; nfÞ ¼ 0; 0 < g < 1; n ¼ nf ð11bÞ
okðg; nfÞ

on
¼ 0; 0 < g < 1; n ¼ nf ð11cÞ

kð0; nÞ ¼ 0; g ¼ 0; n > 0 ð11dÞ
okð1; nÞ

og
¼ �2½hð1; nÞ � Y ð1; nÞ�; g ¼ 1; n > 0 ð11eÞ

The adjoint problem is different from the standard initial
value problems in that the final time conditions at time
n = nf is specified instead of the customary initial condi-
tion. However, this problem can be transformed to an ini-
tial value problem by the transformation of the time
variables as v = nf � n. Crank–Nicolson type central differ-
ence discretization [28] can then be used to solve the above
adjoint problem.
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Finally, the following integral term is left

DJ ¼
Z nf

n¼0

okð0; nÞ
og

Df dn ð12aÞ

From definition [22], the functional increment can be
presented as

DJ ¼
Z nf

n¼0

J 0½f ðnÞ�Df ð0; nÞdn ð12bÞ

A comparison of Eqs. (12a) and (12b) leads to the fol-
lowing expression for the gradient of functional J0[f(n)] of
the functional J[f(n)]:

J 0½f ðnÞ� ¼ okð0; nÞ
og

ð13Þ

The calculation of gradient equations is the most impor-
tant part of CGM since it plays a significant role of the
inverse calculation. We note that J0[f(n)] is always equal
to zero since k(g, nf) = 0 at n = nf. With this fact and
Eqs. ((5a)–(5c)) we concluded that the estimated value for
f(n) is definitely equal to the values of its initial guess.

One easy way to improve the prediction at end time nf is
to extend the measurement time. For instance, if end time
nf = 10, we should measure the data up to, say, n = 12 and
then perform the inverse calculations. Finally extract the
inverse solutions to nf = 10. The singularity near nf can
greatly be improved.

7. Stopping criterion

If the problem contains no measurement errors, the
traditional check condition is specified as

J ½f nþ1ðnÞ� < e ð14aÞ
where e is a small-specified number. However, the mea-
sured temperature data must contain measurement errors.
Therefore, we do not expect the functional Eq. (4) to be
equal to zero at the final iteration step. Following the expe-
riences of the authors [22–27], the discrepancy principle is
used as the stopping criterion, i.e., it is assumed that the
temperature residuals may be approximated by

hð1; nÞ � Y ð1; nÞ � r ð14bÞ
where r is the standard deviation of the measurements,
which is assumed to be a constant. Substituting Eq. (14b)
into Eq. (4), the following expression is obtained for stop-
ping criteria e:

e ¼ r2nf ð14cÞ
Then, the stopping criterion is given by Eq. (14a) with e

determined from Eq. (14c).

8. Computational procedure

The computational procedure for the solution of this
inverse non-Fourier fin problem using conjugate gradient
method may be summarized as follows:
Suppose f n(n) is available at iteration n.

Step 1. Solve the direct problem given by Eq. (3) for
h(g, n).

Step 2. Examine the stopping criterion given by Eq. (14a)
with e given by Eq. (14c). Continue if not satisfied.

Step 3. Solve the adjoint problem given by Eq. (11) for
k(g, n).

Step 4. Compute the gradient of the functional J0[f(n)] from
Eq. (13).

Step 5. Compute the conjugate coefficient cn and direction
of descent Pn from Eqs. (5c) and (5b), respectively.

Step 6. Set Df = Pn, and solve the sensitivity problem given
by Eq. (6) for Dh(g, n).

Step 7. Compute the search step size ln from Eq. (8).
Step 8. Compute the new estimation for f n+1 from Eq. (5a)

and return to step 1.
9. Results and discussion

The objective of this article is to show the validity of
the CGM in estimating the base temperature f(n) for
non-Fourier fins accurately with no prior information on
the functional form of the unknown quantities.

Before studying the inverse non-Fourier fin problem one
should make sure first that the numerical solution for the
direct problem is correct and accurate, otherwise the dis-
cussions of the inverse solutions will become meaningless.
To test the accuracy of the direct problem, a benching
mark problem [6] is first considered, i.e., solve Eq. (3) by
using the following conditions [6]:

HðgÞ ¼ eg; A ¼ 0:5 and he ¼ 1:0

The numerical solutions for h utilizing the technique of
Crank–Nicolson type central difference [28] at n = 0.5 and
x = 1 using b = 0, 1, 2 and 5 are shown in Fig. 2a. The
temperature distributions at n = 0.5 and b = 1 using
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x = 0.1, 0.5, 1 and 2 are shown in Fig. 2b. The numerical
solution is indeed accurate when comparing with the exact
solution shown in reference [6]. Moreover, the oscillatory
behavior for the numerical solution reported in reference
[9] is greatly improved. This implies that more reliable
inverse solution can be obtained by using the present
numerical scheme. Finally the verification of our numerical
program for direct problem is thus completed.

To illustrate the accuracy of the conjugate gradient
method in predicting base temperature f(n) for non-Fourier
fins with the present inverse analysis from the knowledge of
transient temperature recordings, three specific examples
having different form of base temperatures are considered
here.

In order to compare the results for situations involving
random measurement errors, a normally distributed uncor-
related error with zero mean and constant standard devia-
tion are considered. The simulated inexact measurement
data Y can be expressed as

Y ¼ Yexact þ ur ð15Þ

where Yexact is the solution of the direct problem with an
exact base temperature f(n); r is the standard deviation
of the measurements; and u is a random variable that gen-
erated by subroutine DRNNOR of the IMSL [30] and will
be within �2.576 to 2.576 for a 99% confidence bound.

In all the test cases considered here the initial guesses of
f(n) is taken as f(n)initial = 0.0. We now present below three
numerical test cases in determining f(n) by the inverse anal-
ysis using the CGM.

9.1. Numerical test case 1

The first test case is identical to example 2 in Yang’s
study [9]. The objective for reconsidering this problem is
to proof that the present inverse algorithm is more power-
ful than the one used in reference [9].
The unknown transient base temperature distribution
f(n) is assumed as the following form:

f ðnÞ ¼ 1þ 0:5 cos
xn
6:3

� �
; 0 6 n 6 nf ð16Þ

The exact function of the base temperature considered
in the second example in [7] is not given explicitly, for this
reason Eq. (16) is designed as close as possible to the sec-
ond example considered in [9].

The inverse analysis is first performed by using r = 0,
b = 2, Dn = 0.1 and Dg = 0.1. By choosing frequency x =
0.1, 0.5 and 1 and using stopping criterion e = 0.0001, the
estimated f(n) can be obtained after 14, 17 and 14 itera-
tions, respectively and are shown in Fig. 3.

It should be noted that the estimated base temperatures
are not accurate for time near n = 0. This is due to the fact
that the wave is propagated with a finite velocity, and it will
not reach the boundary g = 1 immediately after the base
temperature is applied. No temperatures can be measured
before the thermal wave reaches g = 1 and therefore the
inverse solutions cannot be solved accurately and uniquely
for the initial few time steps.

The computed relative average errors for the estimated
base temperature are 0.001671, 0.002248 and 0.001724,
respectively and are listed in Table 1, where the relative
average error ERR is defined as

ERR ¼
XM

m¼1

f ðmÞ � f̂ ðmÞ
f ðmÞ

�����
�����

" #
�M ð17Þ

Here m represents the index of discreted time, M is the
number of the temporal measurements while f̂ ðmÞ denotes
the estimated values of base temperature.



Table 1
The comparisons of ERR between present study and Yang’s results when considering exact measurements

Relative average error, ERR

Dg = 0.1 Dn = 0.1 b = 2 Dg = 0.02 Dn = 0.02 b = 2

Yang’s result [7] with r = 14 Present study Yang’s result [7] with r = 72 Present study

x = 0.1 0.002285 0.001671
x = 0.5 0.010841 0.002248
x = 1 0.022145 0.001724
x = 2 0.043757 0.007674 0.003389 0.003325
x = 5 0.133720 0.006872 0.010825 0.003788
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It can be seen from Fig. 3 and Table 1 that the estimated
base temperature is very accurate and the use of future time
measurements is not needed. The inverse solutions for the
above examples are also accurate in [9], but the estimations
in this study are more accurate than in [9]. This can be ver-
ified from Table 1 since the relative errors for this study are
always smaller than Yang’s results.

When considering x = 2 and 5 by Yang [9], the esti-
mated base temperatures deviate from the exact values
and the inverse solutions become poor. However, by using
the present iterative regularization method with stopping
criterion e = 0.0001, the estimated f(n) can be obtained
after 12 and 16 iterations for x = 2 and 5, respectively
and the results are shown in Fig. 4. The relative average
errors are calculated as 0.007674 and 0.006872, respectively
and are also reported in Table 1. It can be learned clearly
from the Fig. 4 and Table 1 that the estimations for base
temperature with CGM in the present study remain in a
good agreement with the exact values.

Yang [9] suggested that a fine mesh is necessary in the
periodic temperature input with high frequency, therefore
the mesh sizes for time and space are reduced to
0 8 12
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Fig. 4. The exact and estimated results for x = 2 and 5 with r = 0,
Dg = 0.1 and Dn = 0.1 in test case 1.
Dn = 0.02 and Dg = 0.02. Indeed, the estimations are
greatly improved when using future time steps in [9], how-
ever the optimum number of future time steps is still
unknown.

Will the estimations become more accurate when con-
sidering reduced mesh sizes with CGM? To answer this
question the inverse analysis is performed again with
Dn = 0.02 and Dg = 0.02. By using e = 0.0001, the esti-
mated f(n) for x = 2 and 5 can be obtained after 7 itera-
tions for both cases and the relative average errors can
be obtained as 0.003325 and 0.003788, respectively, they
are listed in Table 1. It can be seen from the Table 1 that
the estimations for this study are also better than those
in [9]. The advantage of using CGM is thus proven.

Next, let us discuss the influence of the measurement
errors on the inverse solutions. First, the measurement
error for the temperatures measured by sensor is taken as
r = 0.05, then error is increased to r = 0.1. The stopping
criterion e is calculated from Eq. (14c) and the number of
iterations are 2 and 2 for r = 0.05 and r = 0.1 with
b = 2. The estimated f(n) for r = 0.05 and r = 0.1 with
time are shown in Figs. 5 and 6, respectively and the
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Fig. 5. The exact and estimated results for x = 2 with r = 0.05, Dg = 0.02
and Dn = 0.02 in test case 1.
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Fig. 6. The exact and estimated results for x = 2 with r = 0.1, Dg = 0.02
and Dn = 0.02 in test case 1.

Table 2
The comparisons of ERR between present study and Yang’s results when
considering error measurements

Relative average error, ERR

Using Dg = 0.02 Dn = 0.02 x = 2 b = 2

Yang’s result [7] Present study

r = 72 r = 74 r = 76 r = 78

r = 0.05 0.087371 0.050208 0.046375 0.032488
r = 0.1 0.174555 0.098434 0.080672 0.078355 0.063645
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Fig. 7. The exact and estimated results with r = 0.05 and 0.1 in test case 2.
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relative average errors are obtained as 0.032488 and
0.063645 and are listed in Table 2.

The inverse estimations involving measurement errors
imply that the present algorithm is less sensitive to the mea-
surement error than Yang’s [9] since the relative average
errors in this article are always smaller than Yang’s results.
Finally, the reliable inverse solutions can still be obtained
when measurement errors are considered.

9.2. Numerical test case 2

The unknown base temperature f(n) is assumed as the
following triangular shapes:

f ðnÞ ¼
0:5þ 0:5� n 0 6 n 6 2 and 6 < n 6 8

2:5� 0:5� n 2 < n 6 4 and 8 < n 6 10

�0:5þ 0:25� n 4 < n 6 6 and 10 < n 6 12

8><
>:

ð18Þ
By assuming the conditions Dn = 0.02, Dg = 0.02 and

r = 0.0, the inverse analysis is performed again. By using
stopping criterion e = 0.0001, after 9 iterations the esti-
mated f(n) can be obtained and is shown in Fig. 7. It can
be seen from Fig. 7 that the estimation is accurate since
the average relative error ERR for estimated base temper-
ature is calculated as ERR = 0.003289.

Next, the measurement error for the temperatures mea-
sured by sensor is considering as r = 0.05, then it is
increased to r = 0.1. The number of iterations for
r = 0.05 and 0.1 are 2 and 1, respectively. The estimated
base temperatures f(n) for r = 0.05 and 0.1 are also shown
in Fig. 7 where the relative average error for r = 0.05 and
0.1 are 0.037745 and 0.060467, respectively. The results
show that by applying this algorithm the inverse solutions
are still reliable when measurement errors are considered.

9.3. Numerical test case 3

In the third test case, a more strict shape for the
unknown transient base temperature f(n) is examined,
i.e., the time-dependent base temperature is now assumed
as a step function in the following form:

f ðnÞ ¼
1:5 0 6 n 6 2 and 6 < n 6 8

0:5 2 < n 6 4 and 8 < n 6 10

1 4 < n 6 6 and 10 < n 6 12

8><
>: ð19Þ

By assuming Dn = 0.02, Dg = 0.02, r = 0.0 and choos-
ing e = 0.0001, the inverse solution for f(n) can be obtained
after 7 iterations and is shown in Fig. 8. It is clear from
Fig. 8 that good estimation is obtained for the base temper-
atures except for the sharp discontinuity by using the tech-
nique of CGM. The average relative error for estimated
base temperatures is calculated as ERR = 0.039444.

The influence of the measurement errors on the inverse
solutions is then considered. The measurement error for
the temperatures is firstly taken as r = 0.05, then error is
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Fig. 8. The exact and estimated results with r = 0.05 and 0.1 in test case 3.

C.-H. Huang, H.-H. Wu / International Journal of Heat and Mass Transfer 49 (2006) 4893–4902 4901
increased to r = 0.1. The number of iterations for r = 0.05
and 0.1 are 2 and 1, respectively. The estimated f(n) with
time is also shown in Fig. 8, and the relative average errors
for r = 0.05 and 0.1 are obtained as ERR = 0.075595 and
0.144317, respectively.

From the above three test cases it can be learned that an
inverse non-Fourier fin problem in estimating time-depen-
dent base temperature is now completed. Reliable estima-
tions can be obtained when using either exact or error
measurements. The drawbacks experienced in reference
[9] can be avoided by using the present algorithm.

10. Conclusions

An iterative regularization method, i.e., CGM, was suc-
cessfully applied for the solution of the inverse non-Fourier
fin problems in estimating the unknown transient base
temperature based on the simulated temperature readings
obtained from the other boundary. Three test cases involv-
ing different form of base temperatures and measurement
errors were examined. The results show that the inverse
solutions obtained by CGM are always better than the
algorithm used in Yang’s study for the identical problem
under consideration. The reliable inverse solutions can
still be obtained when large measurement errors were
considered.

From the numerical test cases in this study it is con-
cluded that the advantages of using the technique of
CGM lie in that (1) the inverse solutions remain stable
when the frequency of base temperature is increased, (2)
the estimation does not depend on the size of grids, (3)
the estimations are not sensitive to the measurement errors
and (4) the concept of future time step is not needed in the
inverse calculations.
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